Technical Support Document
Title V Permit
Foundation Building Materials, LLC
Permit #V20693.R01

1. **Background** ... 2
 1.1 Applicant .. 2
 1.2 Attainment Classification ... 2
 1.3 Compliance/Enforcement History ... 2

2. **Process Description** ... 2
 2.1 Raw Material Receiving ... 3
 2.2 Pre-expansion ... 3
 2.3 Aging .. 3
 2.4 Molding .. 3
 2.5 Block Curing .. 3
 2.6 Finishing .. 3

3. **Emissions** ... 3
 3.1 Methodology ... 3
 3.2 VOC Emissions ... 4

4. **Regulatory Requirements and Monitoring** ... 4
 4.1 Title V/PSD Applicability ... 4
 4.2 Applicable Requirements ... 4
 4.3 Non-Applicable Requirements .. 4

5. **Ambient Impact Assessment - VOCs Modeling** ... 5

6. **List of Abbreviations** .. 5
1. **Background**

1.1 Applicant

Facility: Prowall Building Materials
1092 North Jefferson Avenue
Casa Grande, AZ
Assessor Parcel # 503-83-018J

Mailing Address: Foundation Building Materials, LLC
1092 North Jefferson Avenue
Casa Grande, AZ 85122

1.2 Attainment Classification

The facility is situated in an area classified as attainment for Volatile Organic Compounds (VOCs).

1.3 Compliance/Enforcement History

The facility was last inspected on March 16, 2020, and found to be in compliance with the permit.

1.4 Permitting History

<table>
<thead>
<tr>
<th>Permit</th>
<th>Permit Type</th>
<th>Issue Date</th>
<th>Equipment/Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>B30735.000</td>
<td>Minor Source</td>
<td>4/12/02</td>
<td>Initial permit.</td>
</tr>
<tr>
<td>V20631.000</td>
<td>Title V</td>
<td>10/13/06</td>
<td>Initial Title V Permit.</td>
</tr>
<tr>
<td>V20631.R01</td>
<td>Significant Revision</td>
<td>2/17/07</td>
<td>Increase allowable pentane content from 5.1% to 6%. Source becomes synthetic minor for PSD. Potential increase in the VOC emissions is 79 tpy.</td>
</tr>
<tr>
<td>V20651.000</td>
<td>Renewal</td>
<td>10/11/11</td>
<td>No changes</td>
</tr>
<tr>
<td>V20651.R01</td>
<td>Minor Revision</td>
<td>3/27/12</td>
<td>Increase the allowable maximum pentane content from 6% to 6.4%. Potential increase in the VOC emissions is 35 tpy.</td>
</tr>
<tr>
<td>V20651.R02</td>
<td>Minor Revision</td>
<td>8/16/13</td>
<td>Addition of a 10 mm btu/hr boiler and replacement of the current pre-expander with a new one.</td>
</tr>
<tr>
<td>V20671.A01</td>
<td>Administrative Amendment</td>
<td>10/22/18</td>
<td>Changed the company name</td>
</tr>
<tr>
<td>V20693.000</td>
<td>Renewal</td>
<td>10/19/21</td>
<td>No changes</td>
</tr>
<tr>
<td>V20693.R01</td>
<td>Significant Revision</td>
<td></td>
<td>Increase the allowable maximum pentane content of the beads from 6.4% to 7.5%. Potential increase in the VOC emissions is 96 tpy.</td>
</tr>
</tbody>
</table>

2. **Process Description**

The principal operation at the facility is the molding of expandable polystyrene (EPS) foam blocks. The facility’s SIC Codes is 3086 (Plastic Foam Products). The main processes involved in the manufacturing of the final product are:
2.1 Raw Material Receiving

EPS resin is received in the form of bags of beads formulated to contain up to 7.5% by weight of pentane, a blowing agent.

2.2 Pre-expansion

In order to mold the desired part, it is necessary to first generate a pre-expanded foam particle, “prepuff”, the size of the required density. A pre-measured amount of beads is automatically fed into a pre-expander equipped with a controlled steam inlet and agitation. By controlling the bead feed rate, the steam and air flow, and the agitator rpm, the beads soften and expand to the required density. The prepuff exiting the pre-expander are fed to a bed dryer where they are gently dried. During the expansion, pentane, a Volatile Organic Compound (VOC) is released from the beads.

2.3 Aging

After the pre-expander and dryer, the prepuff are blown into large nylon storage bags and allowed to reach ambient temperature. The aging process can take from 5 to 48 hours, depending upon the desired density. Additional VOCs are released during this process.

2.4 Molding

The aged prepuff are transferred from the storage bags into the bead hopper directly above the molds. This facility has an existing mold and will be installing a new one authorized by this permit. A pre-measured amount of prepuff is dropped into the mold cavity. Once the cavity is full, it is closed and a vacuum system evacuates air from the cavity. Then, the mold is subjected to steam, which flows over the entire mass of the prepuff, until it reaches atmospheric pressure. The heat and increase in pressure cause the prepuff to soften and further expand. With no place for expansion, fusion occurs. After reaching the desired manufacturing parameters, the computer releases pressure and the prepuff are now fused into a block. The entire molding cycle generally lasts from 3 to 15 minutes. VOCs are released during this process.

2.5 Block Curing

Molded blocks are allowed to stabilize, stored in the warehouse at room temperature or by heat curing. During storage, typically 3 days, additional VOCs are emitted.

2.6 Finishing

Molded blocks are trimmed and cut to desired dimensions using a series of thermal hot wire cutting tools.

3. Emissions

3.1 Methodology

In order to demonstrate compliance, the applicant will have to forecast bead use every day that beads are expanded, and after the end of each month demonstrate that the bead use limitation determined by the formula \(Q \text{ (ton/month)} = \frac{20}{\text{pentane %}} \), has not been exceeded.

Monthly calculations are also required to determine VOC emissions. When the rolling 12 month emissions exceed 200 tpy, the calculations will be performed once per week until calculated emissions dip below 200 tons again.

Emissions will be calculated as follows:

\[
\text{VOC Emissions (tons)} = \text{bead use (tons)} \times \text{pentane % by weight}
\]

For all calculations, the applicant will have to use the highest pentane % if a range is given by the manufacturer.
3.2 VOC Emissions

Potential Emissions Increase

Current Potential = 2000 lb beads/hr x 8760 hr/yr x 1 ton x 6.4%/2000 lb = 560.64 tpy

Proposed Potential = 2000 lb beads/hr x 8760 hr/yr x 1 ton x 7.5%/2000 lb = 657.00 tpy

Proposed Potential Increase = 96 tpy

Allowable VOC emissions = 20 ton VOC/month x 12 = 240 tpy

If the permittee chooses to use 7.5% beads, their allowable bead use will be reduced (from 333 tons/month, 4000 tons per year) to:

\[Q = \frac{20}{7.5\%} = 267 \text{ ton/month} = 3,200 \text{ tons per year of beads.} \]

4. **Regulatory Requirements and Monitoring**

4.1 Title V/PSD Applicability

This facility constitutes a “major source” of Volatile Organic Compounds (VOCs) and therefore requires a permit pursuant to Title V of the CAA Amendments of 1990. With the limitations imposed in the permit, the source is not at risk of becoming a “major emitting source” within the meaning of 40 CFR §51.166, which would require the facility to go through a Prevention of Significant Deterioration (PSD) review.

4.2 Applicable Requirements

Since the boiler has a maximum design heat input capacity of 10 mm btu/hour and was manufactured in 1997, it is subject to the Standards of Performance for Small Industrial - Commercial Institution Steam Generating Units, Subpart Dc. However, since the boiler runs on natural gas, Permittee is only required to show compliance with the sulfur dioxide emission standards by keeping monthly records of the fuel used and maintaining fuel supplier certifications.

4.3 Non-Applicable Requirements

4.3.1 CAM: The requirements of 40 CFR 64, Compliance Assurance Monitoring (CAM), are not applicable since Prowall does not use a control device to achieve compliance with any emission limitation or standard for a pollutant for which the source has potential pre-control device emissions greater than or equal to major source levels for that pollutant.

4.3.2 This source is not a major or area source of HAPs so it is not subject to any MACT standards.

5. **Ambient Impact Assessment – VOCs Modeling**

While anticipated VOC emissions from the facility will potentially approach 240 tons-per-year, VOCs do not directly fall subject to an ambient limitation under the CAA.

Maximum anticipated emissions from this facility do not reach the quantity-threshold that would trigger an obligation to analyze the additional impact on any nearby ozone nonattainment areas.

6. **List of Abbreviations**

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAA</td>
<td>Clean Air Act</td>
</tr>
<tr>
<td>CAM</td>
<td>Compliance Assurance Monitoring</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>EPS</td>
<td>Expandable Polystyrene</td>
</tr>
<tr>
<td>hr</td>
<td>Hour</td>
</tr>
</tbody>
</table>
lb ... Pound
MACT .. Maximum Achievable Control Technology
MMBTU .. Million British Thermal Units
MSDS .. Material Safety Data Sheet
NOV .. Notice of Violation
NSPS .. New Source Performance Standard
NSR ... New Source Review
PCAQCD .. Pinal County Air Quality Control District
PGCAQCD ... Pinal-Gila Counties Air Quality Control District
PM10 ... Particulate Matter nominally less than 10 Micrometers
PSD ... Prevention of Significant Deterioration
SIC ... Standard Industrial Code
tpy ... tons per year
VOC ... Volatile Organic Compound
Yr ... year